Testing of Solar Cells

Tremendously high quantities, long life expectancy, and very few to no testing guidelines— this is the current situation in the photovoltaics industry. Testing is essential for companies who want to remain players in this fiercely competitive market and achieve the promised performance data and life expectancy while offering the lowest prices. Solar cells can survive the tremendous drop in prices in recent years only by improved quality, cost-effective production and better safety.
Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

General Test Methods/Standards

ISO 614

Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

EN 1288-5

Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

DIN EN 1465

Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

EN 1464

Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

EN 1288-3

Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

IEC 61215 and EN 61215

IEC 61215 and EN 61215 describe a wide variety of qualification tests, based on potential aging influences, for artificial loading of materials used in PV modules. The following individual loading groups are identified:

 

  • Sunlight, including UV
  • Climate (cold, head, humidity, changes in climate)
  • Mechanical loading (hail, wind, suction and pressure, snow)

 

The materials are considered to have passed the tests if no major visible damage is apparent and the performance output and insulation properties have not changed or have only changed negligibly compared to the position at the start of the test. The test certificate to IEC 61215 has established itself in the past few years as a quality mark for crystalline PV modules and is nowadays required by most national and international funding authorities.

IEC or EN 61215 for thick-film modules and IEC or EN 61646 for thin-film modules (Crystalline Silicon Terrestrial Photovoltaic Modules—Design Qualification and Type Approval).

Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

EN 1288-2, October 2007

Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

IEC 61646 and EN 61646

IEC 61215 and EN 61215 describe a wide variety of qualification tests, based on potential aging influences, for artificial loading of materials used in PV modules. The following individual loading groups are identified:

 

  • Sunlight, including UV
  • Climate (cold, head, humidity, changes in climate)
  • Mechanical loading (hail, wind, suction and pressure, snow)

 

The materials are considered to have passed the tests if no major visible damage is apparent and the performance output and insulation properties have not changed or have only changed negligibly compared to the position at the start of the test. The test certificate to IEC 61215 has established itself in the past few years as a quality mark for crystalline PV modules and is nowadays required by most national and international funding authorities.

Solar cells are exposed to environmental extremes on a daily basis. Rain, hail, storms, and large fluctuations in temperature should not impair the functionality of the product. They must be able to withstand the weight of snow, ice, and installation to achieve a desired life expectancy of 40 years without damage. These expectations are high for both electrical and mechanical characteristics. However, test standards for mechanical requirements for components do not exist. Apart from internal individual contract provisions between suppliers and manufacturers, standardized quality assurance guidelines for solar cells do not exist. The lack of standards and individual customer needs means customized test equipment and test are needed. This is where materials testing experts come into play.

1:22

4-point flexure test

4-point flexure test on solar modules, solar industry, zwickiLine

Related Products(3)

Top